

EC421: International Economics

International Macroeconomics

Additional Notes: 2 Period CA Model with Production (Graph)

Daniel Wales

(ddgw2@cam.ac.uk)

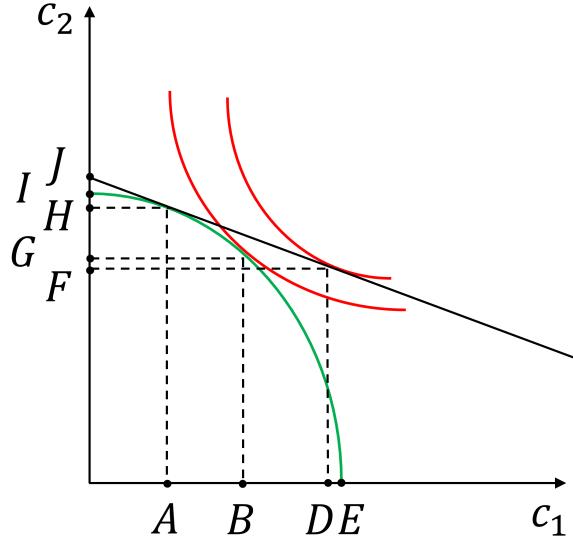
October 23, 2018

Lecture 1: 2 Period Current Account Model with Production

These additional notes verify a claim made in the Lecture 1 about the ability to read K_2 directly from the graph. For ease of exposition, the 2-period current account model with production is reproduced in Figure 1, which is reproduced along with some important intersections on both the x- and y-axis. These points represent:

- A y_1 production point, free trade.
- B $y_1 = c_1$ production/consumption point, financial autarky.
- D c_1 consumption point, free trade.
- E PPF x-axis intersection.
- F c_2 consumption point, free trade.
- G $y_2 = c_2$ production/consumption point, financial autarky.
- H y_2 production point, free trade.
- I PPF y-axis intersection.
- J Budget constraint y-axis intersection.

Figure 1: 2 Period CA Model with Production



For the production points, combine the period budget constraints under financial autarky to observe the Intertemporal Production Possibility Frontier (IPPF) under financial autarky:

$$\begin{aligned}
 c_1 &= y_1 - i_1 \quad \text{and} \quad c_2 = y_2 - i_2, \\
 c_1 &= y_1 - k_2 + k_1 \quad \text{and} \quad c_2 = A_2 F(k_2) + k_2, \\
 \text{Hence: } c_2 &= A_2 F(y_1 + k_1 - c_1) + y_1 + k_1 - c_1,
 \end{aligned}$$

Consider two possibilities.

1. No investment in future capital: $i_1 = -k_1$. Under this scenario:

$$\begin{aligned}
 c_1 &= y_1 + k_1, \\
 c_2 &= 0, \\
 k_2 &= 0.
 \end{aligned}$$

which therefore defines the PPF intersection with the x-axis, point E .

2. Full investment in future capital: $i_1 = y_1$. Under this scenario:

$$\begin{aligned} c_1 &= 0, \\ c_2 &= A_2 F(y_1 + k_1) + y_1 + k_1 = A_2 F(k_2) + k_2, \\ k_2 &= y_1 + k_1 \end{aligned}$$

which therefore defines the PPF intersection with the y-axis, point I .

Next consider the equilibrium point (A, H) . In this case we know that capital, k_2 is determined using the first order condition of the problem:

$$\begin{aligned} A_2 F'(k_2) &= r, \\ k_2 &= F'\left(\frac{r}{A_2}\right)^{-1}. \end{aligned}$$

where the inverse of the function $F'(\cdot)$ is defined as $F'(\cdot)^{-1}$ and this result displays the separation between investment and savings decisions. Hence we have that point (A, H) will be determined as:

$$\begin{aligned} c_1 &= y_1 - k_2 + k_1 = y_1 - F'\left(\frac{r}{A_2}\right)^{-1} + k_1, \\ c_2 &= A_2 F[k_2] + k_2 = A_2 F\left[F'\left(\frac{r}{A_2}\right)^{-1}\right] + F'\left(\frac{r}{A_2}\right)^{-1}, \end{aligned}$$

Therefore, the size of this (horizontal) difference between points A and E is clearly given as the distance, $k_2 = F'\left(\frac{r}{A_2}\right)^{-1}$. Hence the equilibrium level of k_2 , under free trade, may be read directly from the graph.